If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(3x^2)=189
We move all terms to the left:
6(3x^2)-(189)=0
a = 63; b = 0; c = -189;
Δ = b2-4ac
Δ = 02-4·63·(-189)
Δ = 47628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{47628}=\sqrt{15876*3}=\sqrt{15876}*\sqrt{3}=126\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126\sqrt{3}}{2*63}=\frac{0-126\sqrt{3}}{126} =-\frac{126\sqrt{3}}{126} =-\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126\sqrt{3}}{2*63}=\frac{0+126\sqrt{3}}{126} =\frac{126\sqrt{3}}{126} =\sqrt{3} $
| 2q+12=-6 | | 6.59(9)^3+10.19=x | | 5(x+2)–7=-32 | | 0.7h=42 | | 8/7=40/x | | 6.75+3.75x=13.25 | | 7x+31=35 | | 19−–6j=–17 | | 2x-5=3x+17 | | -5.46/3+4.64=x | | f(6)=14 | | -12s+20=-16 | | x4–6x2–16=0 | | x=3x+9=-5 | | (x-2)^2+20=16 | | 17h-47-6h=160 | | 5+(3x+11)^2-(5x-7)^2=0 | | 2.4-14y=-68 | | 3*2(12-2v/3)+3-3v=3*13 | | 83-17=19-4e | | 16(x+3)=-16 | | |b|-4=-2 | | 10=(c)/(3)-4+(c)/(6) | | 1/4(x+1/5)=-17/15 | | 2y+19=4(19)-11 | | (8x+3)/(11-x)=0 | | 5(19)+20+(2y+19)=180 | | 4(19)-11=2y+19 | | (2y+19)+4(18)-11=180 | | x*x=5000 | | (2y+19)=4(19)-11 | | 21x^2-25x-26=0 |